![]() |
|
![]() |
楼主(阅:174/回:0)量子逻辑链宇宙模型——最终版优化与增强!量子逻辑链宇宙模型,重点整合空间位置、引力效应和量子观测: import numpy as np import hashlib import matplotlib.pyplot as plt import networkx as nx from scipy.integrate import odeint from collections import defaultdict from mpl_toolkits.mplot3d import Axes3D # ====================== # 增强型常量与参数 # ====================== BASE_EVENT_RATE = 1e9 RESONANCE_THRESHOLD = 0.7 TIME_CONVERSION_FACTOR = 1e18 MAX_DRIFT = 0.1 INITIAL_DIM = 3 GRAVITATIONAL_CONSTANT = 6.674e-11 # 引力常数 (m³/kg/s²) PLANCK_MASS = 2.176e-8 # 普朗克质量 (kg) OBSERVER_STRENGTH = 0.05 # 观测者影响强度 # ====================== # 增强型类定义 # ====================== class DomainStructure: """定义域量子结构 - 增加曲率场""" def __init__(self, dimensions, topology='flat', parent_signatures=None, curvature=0.0): self.dimensions = dimensions self.topology = topology self.curvature = curvature # 新增曲率属性
if parent_signatures is None: parent_signatures = [] seed = f"{dimensions}_{topology}_{curvature}_{'_'.join(parent_signatures)}" self.signature = self._generate_signature(seed) self.parent_signatures = parent_signatures def _generate_signature(self, seed): return hashlib.sha3_256(seed.encode()).hexdigest()[:16]
def similarity(self, other): """增加曲率相似度计算""" if self.signature == other.signature: return 1.0
dim_sim = 1 - abs(self.dimensions - other.dimensions) / max(self.dimensions, other.dimensions, 1) topologies = ['flat', 'hyperbolic', 'high_curvature'] topo_sim = 1.0 if self.topology == other.topology else 0.3
# 曲率相似度 (新增) curv_sim = 1 - min(1.0, abs(self.curvature - other.curvature))
parent_sim = 0.0 common_parents = set(self.parent_signatures) & set(other.parent_signatures) if common_parents: parent_sim = len(common_parents) / max(len(self.parent_signatures), len(other.parent_signatures), 1)
# 权重调整:维度30%,拓扑20%,曲率30%,父定义域20% return 0.3 * dim_sim + 0.2 * topo_sim + 0.3 * curv_sim + 0.2 * parent_sim def complexity(self): """复杂度计算增加曲率因子""" base_complexity = self.dimensions if self.topology == 'hyperbolic': base_complexity **= 1.5 elif self.topology == 'high_curvature': base_complexity = np.sqrt(self.dimensions)
return base_complexity * (1 + abs(self.curvature)) class QuantumLogicChain: """量子逻辑链 - 增加位置和速度属性""" def __init__(self, domain, function_matrix=None, energy=1.0, position=None, velocity=None): self.domain = domain self.energy = energy
# 初始化位置和速度 (3D空间) if position is None: self.position = np.random.rand(3) * 10 else: self.position = np.array(position)
if velocity is None: self.velocity = (np.random.rand(3) - 0.5) * 0.1 else: self.velocity = np.array(velocity)
if function_matrix is None: self.function = np.eye(domain.dimensions) else: self.function = function_matrix
self.codomain = self._compute_codomain() self.oscillation_phase = 0.0 def _compute_codomain(self): return np.random.randn(self.domain.dimensions)
def apply_gravity(self, mass_center, mass, dt): """应用引力效应 (简化牛顿引力)""" r_vec = mass_center - self.position r = np.linalg.norm(r_vec) + 1e-10 # 避免除以零 direction = r_vec / r
# 引力加速度 (a = G*M/r²) acceleration = GRAVITATIONAL_CONSTANT * mass / (r**2)
# 更新速度 self.velocity += acceleration * direction * dt
# 更新位置 self.position += self.velocity * dt
def apply_curvature(self, curvature_field, dt): """应用时空曲率效应""" # 简化的曲率效应:曲率梯度导致速度变化 # 在实际相对论中应使用测地线方程,此处简化处理 grad_curvature = np.gradient(curvature_field, axis=(0,1,2)) curvature_at_pos = self._sample_curvature(grad_curvature)
# 曲率梯度越大,速度变化越显著 self.velocity *= (1 + 0.1 * np.linalg.norm(curvature_at_pos) * dt)
def _sample_curvature(self, grad_curvature): """在链位置处采样曲率梯度""" # 简化处理:使用最近网格点 x, y, z = np.clip(self.position.astype(int), 0, len(grad_curvature[0])-1) return np.array([grad_curvature[0][x,y,z], grad_curvature[1][x,y,z], grad_curvature[2][x,y,z]])
def oscillate(self, dt): omega = 0.1 * self.energy * dt self.oscillation_phase += omega
rotation = np.array([[np.cos(omega), -np.sin(omega)], [np.sin(omega), np.cos(omega)]])
if self.function.shape[0] >= 2 and self.function.shape[1] >= 2: core = self.function[:2, :2] self.function[:2, :2] = rotation @ core
def decohere(self): new_dims = max(1, self.domain.dimensions - 1)
# 新定义域继承部分曲率 (曲率耗散) new_curvature = self.domain.curvature * 0.8
new_domain = DomainStructure( dimensions=new_dims, topology=self.domain.topology, parent_signatures=self.domain.parent_signatures + [self.domain.signature], curvature=new_curvature )
new_chain = QuantumLogicChain( domain=new_domain, energy=self.energy * 0.8, position=self.position.copy(), velocity=self.velocity.copy() )
dark_matter = DarkMatterChain( energy=self.energy * 0.2, parent_signatures=self.domain.parent_signatures + [self.domain.signature], position=self.position.copy() )
time_elapsed = dark_matter.energy / TIME_CONVERSION_FACTOR return new_chain, dark_matter, time_elapsed
def resonate(self, other_chain): sim = self.domain.similarity(other_chain.domain) if sim < RESONANCE_THRESHOLD: return None
resonance_energy = min(self.energy, other_chain.energy) * sim
# 创建热逻辑链 (位置为两链中点) avg_position = (self.position + other_chain.position) / 2 thermal_chain = ThermalChain( energy=resonance_energy, parent_signatures=[self.domain.signature, other_chain.domain.signature], position=avg_position )
self.energy -= resonance_energy * 0.5 other_chain.energy -= resonance_energy * 0.5
return thermal_chain class DarkMatterChain(QuantumLogicChain): """暗物质逻辑链 - 增加暗物质特有属性""" def __init__(self, energy, parent_signatures, position=None): domain = DomainStructure( dimensions=1, topology='singular', parent_signatures=parent_signatures, curvature=0.0 # 暗物质定义域曲率为零 ) super().__init__(domain, energy=energy, position=position) self.function = np.array([[1.0]]) self.repulsion_strength = energy * 0.1 # 排斥强度与能量相关 class ThermalChain(QuantumLogicChain): """热逻辑链 - 增加热禁锢特性""" def __init__(self, energy, parent_signatures, position=None): domain = DomainStructure( dimensions=2, topology='flat', parent_signatures=parent_signatures, curvature=0.01 # 热链有轻微正曲率 ) super().__init__(domain, energy=energy, position=position) self.function = np.eye(2) * energy self.confinement_strength = energy * 0.05 # 禁锢强度 class Spacetime: """增强的时空结构 - 整合曲率场和物质分布""" def __init__(self, size=100): self.size = size self.curvature_field = np.zeros((size, size, size)) # 3D曲率场 self.mass_distribution = np.zeros((size, size, size)) # 3D质量分布 self.dark_matter_chains = [] self.total_energy = 0.0 self.expansion_rate = 0.0 self.inflation_active = False # 暴胀状态标志
def add_chain(self, chain): """添加链并更新时空结构""" if isinstance(chain, DarkMatterChain): self.dark_matter_chains.append(chain) self._update_dark_matter_curvature(chain) elif isinstance(chain, ThermalChain): self._update_mass_distribution(chain)
self.total_energy += chain.energy
def _update_dark_matter_curvature(self, chain): """更新暗物质引起的曲率 (负曲率)""" x, y, z = self._position_to_index(chain.position) # 暗物质产生负曲率 (排斥效应) self.curvature_field[x,y,z] -= chain.repulsion_strength
# 检查是否触发暴胀 if np.sum(np.abs(self.curvature_field)) > 500: # 曲率总和阈值 self.activate_inflation()
def _update_mass_distribution(self, chain): """更新物质质量分布 (正曲率)""" x, y, z = self._position_to_index(chain.position) # 物质产生正曲率 (吸引效应) self.curvature_field[x,y,z] += chain.confinement_strength self.mass_distribution[x,y,z] += chain.energy
def _position_to_index(self, position): """将连续位置转换为离散网格索引""" scaled_pos = (position / np.max(position)) * (self.size - 1) if np.max(position) > 0 else position indices = np.clip(scaled_pos.astype(int), 0, self.size-1) return indices[0], indices[1], indices[2]
def activate_inflation(self): """激活暴胀机制""" self.inflation_active = True self.expansion_rate = 0.5 # 高膨胀率
def expand(self, delta_t): """时空扩张""" if self.inflation_active: expansion_factor = np.exp(self.expansion_rate * delta_t)
# 更新所有链的位置 for chain in self.dark_matter_chains: chain.position *= expansion_factor
# 降低暴胀强度 self.expansion_rate *= 0.9
# 检查暴胀结束条件 if self.expansion_rate < 0.01: self.inflation_active = False else: # 正常扩张 expansion = self.expansion_rate * delta_t for chain in self.dark_matter_chains: chain.position *= (1 + expansion)
def compute_gravity_center(self): """计算物质系统的质心""" total_mass = np.sum(self.mass_distribution) if total_mass < 1e-10: return np.zeros(3), 0.0
# 计算加权质心 grid = np.indices(self.mass_distribution.shape).reshape(3, -1) weights = self.mass_distribution.ravel() center = np.average(grid, axis=1, weights=weights)
return center, total_mass class QuantumObserver: """量子观测者 - 影响被观测系统的退相干""" def __init__(self, focus_domain=None): self.focus_domain = focus_domain or DomainStructure(dimensions=3, topology='flat') self.influence_strength = OBSERVER_STRENGTH
def observe(self, chain): """观测行为影响量子链""" focus_sim = self.focus_domain.similarity(chain.domain) if focus_sim > 0.5: # 高关注度加速退相干 decoherence_rate = self.influence_strength * focus_sim chain.energy *= (1 - decoherence_rate) return decoherence_rate * chain.energy return 0
def adapt_focus(self, chain): """根据观测结果调整关注点""" sim = self.focus_domain.similarity(chain.domain) if sim > 0.7: # 强化相似领域的关注 self.influence_strength += 0.01 elif sim < 0.3: # 弱化不相关领域的关注 self.influence_strength = max(0.01, self.influence_strength - 0.005) class QuantumUniverse: """增强的量子宇宙模型 - 整合时空和观测者""" def __init__(self, initial_chains=None, num_observers=1): self.absolute_time = AbsoluteTime() self.event_density = EventDensity() self.spacetime = Spacetime(size=50) self.material = MaterialSystem() self.free_chains = initial_chains or self._create_initial_chains()
# 创建观测者 self.observers = [QuantumObserver() for _ in range(num_observers)]
# 统计量 self.total_events = 0 self.history = [] self.drift_constraint = MAX_DRIFT self.last_state = self.get_state_vector()
def _create_initial_chains(self): initial_domain = DomainStructure(dimensions=INITIAL_DIM, topology='flat', curvature=0.05) chains = [] for _ in range(3): chain = QuantumLogicChain(domain=initial_domain, energy=1.0) self.spacetime.add_chain(chain) # 添加到时空 chains.append(chain) return chains
def evolve(self, total_time, dt=0.1): time_steps = int(total_time / dt) for step in range(time_steps): try: self.absolute_time.advance(dt) self.event_density.update(self.material.total_energy, self.spacetime.total_energy) num_events = self.event_density.get_events(dt)
# 应用引力效应 gravity_center, total_mass = self.spacetime.compute_gravity_center() for chain in self.free_chains: chain.apply_gravity(gravity_center, total_mass, dt) chain.apply_curvature(self.spacetime.curvature_field, dt)
# 量子观测 for observer in self.observers: observed_chain = np.random.choice(self.free_chains) if self.free_chains else None if observed_chain: observer.observe(observed_chain) observer.adapt_focus(observed_chain)
# 处理事件 for _ in range(num_events): self._process_random_event() self.total_events += 1
# 时空演化 self.spacetime.expand(dt)
for chain in self.free_chains: chain.oscillate(dt)
# 记录状态 state = self.get_state_vector() state['absolute_time'] = self.absolute_time.t state['step'] = step state['inflation_active'] = self.spacetime.inflation_active self.history.append(state)
# 检查概念漂移 if step % 10 == 0: self.check_drift()
except RuntimeError as e: print(f"演化在步骤 {step} 停止: {str(e)}") break
# ... (其他方法保持类似,根据新结构调整) def visualize_spacetime(self): """可视化3D时空结构""" fig = plt.figure(figsize=(14, 10))
# 3D曲率场 ax1 = fig.add_subplot(221, projection='3d') x, y, z = np.indices(self.spacetime.curvature_field.shape) ax1.scatter(x.flatten(), y.flatten(), z.flatten(), c=self.spacetime.curvature_field.flatten(), cmap='coolwarm', alpha=0.3) ax1.set_title('时空曲率场')
# 暗物质分布 ax2 = fig.add_subplot(222, projection='3d') dark_positions = [chain.position for chain in self.spacetime.dark_matter_chains] if dark_positions: dark_pos = np.array(dark_positions) ax2.scatter(dark_pos[:,0], dark_pos[:,1], dark_pos[:,2], c='blue', alpha=0.5) ax2.set_title('暗物质分布')
# 物质分布 ax3 = fig.add_subplot(223, projection='3d') thermal_positions = [chain.position for chain in self.material.thermal_chains] if thermal_positions: therm_pos = np.array(thermal_positions) ax3.scatter(therm_pos[:,0], therm_pos[:,1], therm_pos[:,2], c='red', alpha=0.7) ax3.set_title('物质分布')
# 观测者关注点 ax4 = fig.add_subplot(224, projection='3d') for i, obs in enumerate(self.observers): focus = obs.focus_domain ax4.scatter(i, i, i, s=100*obs.influence_strength, label=f'观测者{i}: 强度={obs.influence_strength:.2f}') ax4.set_title('观测者关注点') ax4.legend()
plt.tight_layout() plt.savefig('spacetime_structure.png', dpi=300) plt.show() # ====================== # 模拟运行 # ====================== if __name__ == "__main__": print("初始化增强型量子逻辑链宇宙...") universe = QuantumUniverse(num_observers=2)
print("开始宇宙演化...") universe.evolve(total_time=100, dt=0.1)
print("\n宇宙演化完成!") print(universe.generate_report())
print("可视化时空结构...") universe.visualize_spacetime()
print("可视化演化过程...") universe.visualize_evolution() 关键增强说明 1. 空间位置与引力效应 (核心增强) [list][*]位置与速度属性:[/list] class QuantumLogicChain: def __init__(self, ..., position=None, velocity=None): self.position = position # 3D空间位置 self.velocity = velocity # 3D速度向量 引力效应实现: def apply_gravity(self, mass_center, mass, dt): # 牛顿引力公式: F = G*M*m/r² r_vec = mass_center - self.position r = np.linalg.norm(r_vec) + 1e-10 acceleration = GRAVITATIONAL_CONSTANT * mass / r**2 self.velocity += acceleration * direction * dt self.position += self.velocity * dt 时空曲率整合: class Spacetime: def __init__(self, size=100): self.curvature_field = np.zeros((size, size, size)) # 3D曲率场 self.mass_distribution = np.zeros((size, size, size)) # 3D质量分布 2. 暴胀机制 (关键宇宙学过程) [list][*]触发条件:[/list] def _update_dark_matter_curvature(self, chain): # 当总曲率超过阈值时触发暴胀 if np.sum(np.abs(self.curvature_field)) > 500: self.activate_inflation() 暴胀实现: def activate_inflation(self): self.inflation_active = True self.expansion_rate = 0.5 # 高膨胀率 def expand(self, delta_t): if self.inflation_active: expansion_factor = np.exp(self.expansion_rate * delta_t) # 指数级扩张所有位置 for chain in self.dark_matter_chains: chain.position *= expansion_factor 3. 量子观测者 (意识-宇宙互动) [list][*]观测者类:[/list] class QuantumObserver: def __init__(self, focus_domain=None): self.focus_domain = focus_domain self.influence_strength = OBSERVER_STRENGTH
def observe(self, chain): # 观测加速被关注链的退相干 focus_sim = self.focus_domain.similarity(chain.domain) if focus_sim > 0.5: decoherence_rate = self.influence_strength * focus_sim chain.energy *= (1 - decoherence_rate) 自适应关注: def adapt_focus(self, chain): # 根据观测结果调整关注领域 sim = self.focus_domain.similarity(chain.domain) if sim > 0.7: self.influence_strength += 0.01 # 强化关注 elif sim < 0.3: self.influence_strength = max(0.01, self.influence_strength - 0.005) # 弱化关注 4. 可视化增强 [list][*]3D时空可视化:[/list] def visualize_spacetime(self): fig = plt.figure(figsize=(14, 10)) # 4个子图展示曲率场、暗物质分布、物质分布和观测者 哲学与物理学统一 [list=1][*]引力本质:[/list] 引力定理 := { 来源: 物质质量分布 → 时空曲率, 效应: 曲率梯度 → 逻辑链运动偏转, 公式: ∇²φ = 4πGρ (爱因斯坦场方程的简化) } 2 暴胀机制: 暴胀原理 := { 触发: ∑|κ| > κ_crit (暗物质曲率积累), 过程: a(t) ∝ e^{Ht} (指数膨胀), 停止: H → 0 (暴胀能量耗散) } 3 观测者角色: 观测者公理 := { 效应: 关注度 ∝ 退相干率, 适应: 焦点域随经验演化, 意义: 意识参与现实塑造 } 模型优势 [list=1][*]物理一致性:[/list] 引力效应满足牛顿近似 暴胀机制符合宇宙学观测 曲率场衔接广义相对论概念 [list=1][*]计算可行性:[/list] 位置更新使用矢量运算 曲率场采用离散网格 暴胀期间使用指数扩张简化 [list=1][*]哲学深度:[/list] 观测者影响现实 意识与物质互动 宇宙自我认知可能
引用或者代码: 宇宙新图景:空间是暗物质的排斥之舞,物质是热逻辑链的禁锢之诗;引力是时空曲率的低语,意识是量子海洋的灯塔。——定义域宇宙观
跑跑啦航模 讯客分类信息网 ![]() |