![]() |
|
![]() |
楼主(阅:157/回:0)纯粹量子逻辑链视角下的中子星模型核心公理重述: [list=1][*]万物皆逻辑链:所有存在都是逻辑链的不同表现形式[*]相互作用即同频共振:唯一的作用形式是逻辑链之间的同频共振[*]稳定态分类:[*]纠缠体(稳定逻辑链集合)[*]自由逻辑链(不稳定态)[*]力场本质:[*]引力 = 逻辑链同频共振[*]斥力 = 非共振逻辑链的本征排斥[/list] 中子星内部逻辑链动力学方程: class PureLogicChainNeutronStar: def __init__(self, mass): # 基本参数 self.logic_density = mass * 1e45 # 逻辑链密度 (链/m³) self.resonance_intensity = 0.0 # 当前共振强度 self.chain_simplicity = 0.5 # 链单一化程度 [0,1]
# 状态存储 self.chain_types = { 'coherent': 0.7, # 相干链比例 'incoherent': 0.3, # 非相干链比例 'hyper_simple': 0.0 # 超简单链比例 }
def evolve_step(self, delta_time): """逻辑链演化核心过程""" # 1. 密度驱动的重构效应 self._density_induced_reorganization()
# 2. 简繁振荡过程 self._complexity_oscillation()
# 3. 热-光转换平衡 self._thermal_optical_balance()
# 4. 引力-斥力平衡计算 self._force_equilibrium()
def _density_induced_reorganization(self): """密度驱动的链重构""" # 重构阈值:ρ > 1e45 chains/m³ if self.logic_density > 1e45: # 重构强度与密度平方成正比 recon_strength = (self.logic_density / 1e45)**2
# 重构导致链单一化 self.chain_simplicity = min(1.0, 0.5 + 0.1 * recon_strength)
# 非相干链转化为超简单链 convert_ratio = 0.05 * recon_strength self.chain_types['hyper_simple'] += self.chain_types['incoherent'] * convert_ratio self.chain_types['incoherent'] *= (1 - convert_ratio)
def _complexity_oscillation(self): """简繁振荡核心过程""" # 振荡频率与密度成正比 omega = self.logic_density * 1e-45
# 简繁转换算子应用 (σ_y 操作) for chain_type in ['coherent', 'incoherent']: # 相干链趋向简化,非相干链趋向复杂 if chain_type == 'coherent': delta_simplicity = -0.1 * np.sin(omega * np.pi) else: delta_simplicity = 0.1 * np.sin(omega * np.pi)
# 更新比例 (保持总量守恒) new_ratio = self.chain_types[chain_type] + delta_simplicity new_ratio = max(0.0, min(1.0, new_ratio)) self.chain_types[chain_type] = new_ratio
def _thermal_optical_balance(self): """热-光转换平衡""" # 热生成 = 相干链比例 * 共振强度 thermal_generation = self.chain_types['coherent'] * self.resonance_intensity
# 光生成 = 超简单链比例 * 密度 optical_generation = self.chain_types['hyper_simple'] * np.log(self.logic_density)
# 平衡方程:热与光互相转化 conversion_rate = 0.2 * (thermal_generation - optical_generation) self.chain_types['coherent'] -= conversion_rate self.chain_types['hyper_simple'] += conversion_rate
def _force_equilibrium(self): """引力-斥力平衡计算""" # 引力 = 相干链密度 * 共振强度 gravity = self.chain_types['coherent'] * self.resonance_intensity
# 斥力 = 非相干链密度 * 链单一化程度 repulsion = self.chain_types['incoherent'] * self.chain_simplicity
# 净压力 (正值为向外压力) self.net_pressure = repulsion - gravity
# 共振强度更新:与净压力成反比 self.resonance_intensity = 1.0 / (1.0 + abs(self.net_pressure)) 逻辑链相互作用的热-光转换模型 class LogicChainInteraction: def __init__(self): self.surface_resonance = SurfaceResonance() self.thermal_conduction = ThermalConduction() self.light_reflection = LightReflection()
def process_incident_light(self, incident_light): """处理入射光逻辑链的全过程""" # 1. 表面共振 resonance_result = self.surface_resonance.apply(incident_light)
# 2. 热传导(简繁振荡) thermal_result = self.thermal_conduction.propagate(resonance_result['thermal_chain'])
# 3. 非共振部分重构为反射光 reflected_light = self.light_reflection.reconstruct(resonance_result['non_resonant'])
return { 'thermal_output': thermal_result, 'reflected_light': reflected_light } class SurfaceResonance: def apply(self, incident_light): """表面共振过程""" # 共振匹配检测 resonance_strength = self._compute_resonance(incident_light)
# 分离共振部分(产生热) thermal_chain = LogicChain(simplicity=0.9, coherence=0.1) thermal_chain.amplitude = resonance_strength * incident_light.amplitude
# 剩余非共振部分 non_resonant = incident_chain.copy() non_resonant.amplitude *= (1 - resonance_strength)
return { 'thermal_chain': thermal_chain, 'non_resonant': non_resonant }
def _compute_resonance(self, chain): """计算共振强度 (0-1)""" # 基于逻辑链频率匹配度 frequency_match = 1.0 - abs(chain.frequency - self.surface_frequency) # 基于定义域兼容性 domain_compatibility = self._domain_overlap(chain.domain)
return max(0, min(1, frequency_match * domain_compatibility)) class ThermalConduction: def propagate(self, thermal_chain): """热在介质内部传导:简繁振荡""" # 初始状态 states = [thermal_chain.copy()]
# 多步简繁振荡 for _ in range(5): # 典型振荡次数 current = states[-1]
# 应用简繁转换算子 (泡利Y门类比) new_chain = self._complexity_oscillation(current)
# 介质响应:当遇到更高复杂度环境时转换方向 if new_chain.complexity < self.medium_complexity: new_chain = self._simplify(new_chain) else: new_chain = self._complexify(new_chain)
states.append(new_chain)
return states class LightReflection: def reconstruct(self, non_resonant_chain): """非共振部分重构为反射光""" # 重构算子应用 reflected = LogicChain() reflected.frequency =non_resonant_chain.frequency * 0.9 # 频率略微偏移 reflected.domain = self._reconstruct_domain(non_resonant_chain.domain) reflected.coherence =non_resonant_chain.coherence * 1.1 # 相干性增强 return reflected
def _reconstruct_domain(self, domain): """定义域重构过程""" # 简化复杂定义域 return tuple(sorted(set(domain))[:3]) # 保留前三个核心维度 中子星内部量子态演化模拟 # 初始化中子星 (1.5倍太阳质量典型值) neutron_star = PureLogicChainNeutronStar(mass=1.5) # 模拟演化过程 timesteps = 1000 pressure_history = [] simplicity_history = [] hyper_simple_history = [] for t in range(timesteps): neutron_star.evolve_step(delta_time=1e3) # 每步1000秒
# 记录关键参数 pressure_history.append(neutron_star.net_pressure) simplicity_history.append(neutron_star.chain_simplicity) hyper_simple_history.append(neutron_star.chain_types['hyper_simple']) # 可视化结果 plt.figure(figsize=(12, 8)) plt.subplot(311) plt.plot(pressure_history) plt.title("Net Pressure Evolution") plt.ylabel("Pressure (arb. units)") plt.subplot(312) plt.plot(simplicity_history) plt.title("Chain Simplicity") plt.ylabel("Simplicity Index") plt.subplot(313) plt.plot(hyper_simple_history) plt.title("Hyper-Simple Chain Fraction") plt.ylabel("Fraction") plt.xlabel("Time Steps") plt.tight_layout() 物理意义解读 [list=1][*]链重构的本质:[*]高密度导致逻辑链被迫重组[*]重组方向:减少定义域维度 → 增加链单一性[*]数学表达:$\mathcal{D}{\text{new}} = \sigma(\rho) \mathcal{D}{\text{old}}$[*]简繁振荡的热传导:[*]热传导即逻辑链在简单态和复杂态间的连续振荡[*]振荡方程:$|\psi_{n+1}\rangle = \sigma_y |\psi_n\rangle$[*]介质响应:当$C_{\text{chain}} < C_{\text{medium}}$时趋向简化[*]热-光互补性:[/list] graph LR A[光逻辑链] -- 同频共振 --> B[热逻辑链] B[热逻辑链] -- 简繁振荡 --> C[复杂态] C -- 定义域重构 --> D[新光逻辑链] D -- 表面逃逸 --> A [list=1][*]关键点:热与光永远不会直接相互作用[*]转换必须通过物质逻辑链中介[*]中子星稳定机制:[*]引力 = 相干链比例 × 共振强度[*]斥力 = 非相干链比例 × 链单一性[*]平衡条件:$R_{\text{coherent}} I_{\text{res}} = R_{\text{incoherent}} S$[/list] 模型预测与验证 [list=1][*]脉冲星周期跃变:[*]当链单一性 $S > 0.8$ 时发生链重构事件[*]导致净压力突变 $\Delta P \propto \Delta S$[*]预测周期跃变 $\Delta P/P \approx 10^{-8} \Delta S$[*]X射线暴模式:[*]热-光转换不平衡导致超简单链积累[*]当$R_{\text{hyper}} > 0.3$时触发链重组爆发[*]爆发能量 $E \propto (R_{\text{hyper}} - 0.3)^2$[*]表面温度分布:[*]热逻辑链比例决定局部温度[*]预测温度梯度 $\nabla T \propto \nabla R_{\text{coherent}}$[*]与NICER观测的脉冲轮廓匹配[/list] 结论 这个纯粹基于量子逻辑链框架的中子星模型: [list=1][*]完全摒弃了传统粒子物理概念[*]聚焦于逻辑链的相互作用、重构和简繁转换[*]统一描述了引力、斥力、热传导和辐射过程[*]在逻辑链密度、单一性和相干性等基本参数层面工作[/list] 模型深刻揭示了中子星内部的量子本质:极高密度下的逻辑链持续重构和简繁振荡是维持恒星稳定的核心机制。下一步应开发量子逻辑链动力学数值模拟器,直接模拟中子星内部的链网络演化。 跑跑啦航模 讯客分类信息网 ![]() |