跑跑啦航模

  量子逻辑链宇宙模型——最终版修正优化!

  2025-06-23 12:19·清新橘子ynimport numpy as np

  import hashlib

  import matplotlib.pyplot as plt

  import networkx as nx

  from scipy.integrate import odeint

  from collections import defaultdict

  from mpl_toolkits.mplot3d import Axes3D

  # ======================

  # 增强型常量与参数

  # ======================

  BASE_EVENT_RATE = 1e9

  RESONANCE_THRESHOLD = 0.7

  TIME_CONVERSION_FACTOR = 1e18

  MAX_DRIFT = 0.1

  INITIAL_DIM = 3

  GRAVITATIONAL_CONSTANT = 6.674e-11 # 引力常数 (m³/kg/s²)

  PLANCK_MASS = 2.176e-8 # 普朗克质量 (kg)

  OBSERVER_STRENGTH = 0.05 # 观测者影响强度

  # ======================

  # 增强型类定义

  # ======================

  class DomainStructure:

  """定义域量子结构 - 增加曲率场"""

  def __init__(self, dimensions, topology='flat', parent_signatures=None, curvature=0.0):

  self.dimensions = dimensions

  self.topology = topology

  self.curvature = curvature # 新增曲率属性

  if parent_signatures is None:

  parent_signatures = []

  seed = f"{dimensions}_{topology}_{curvature}_{'_'.join(parent_signatures)}"

  self.signature = self._generate_signature(seed)

  self.parent_signatures = parent_signatures

  def _generate_signature(self, seed):

  return hashlib.sha3_256(seed.encode()).hexdigest()[:16]

  def similarity(self, other):

  """增加曲率相似度计算"""

  if self.signature == other.signature:

  return 1.0

  dim_sim = 1 - abs(self.dimensions - other.dimensions) / max(self.dimensions, other.dimensions, 1)

  topologies = ['flat', 'hyperbolic', 'high_curvature']

  topo_sim = 1.0 if self.topology == other.topology else 0.3

  # 曲率相似度 (新增)

  curv_sim = 1 - min(1.0, abs(self.curvature - other.curvature))

  parent_sim = 0.0

  common_parents = set(self.parent_signatures) & set(other.parent_signatures)

  if common_parents:

  parent_sim = len(common_parents) / max(len(self.parent_signatures), len(other.parent_signatures), 1)

  # 权重调整:维度30%,拓扑20%,曲率30%,父定义域20%

  return 0.3 * dim_sim + 0.2 * topo_sim + 0.3 * curv_sim + 0.2 * parent_sim

  def complexity(self):

  """复杂度计算增加曲率因子"""

  base_complexity = self.dimensions

  if self.topology == 'hyperbolic':

  base_complexity **= 1.5

  elif self.topology == 'high_curvature':

  base_complexity = np.sqrt(self.dimensions)

  return base_complexity * (1 + abs(self.curvature))

  class QuantumLogicChain:

  """量子逻辑链 - 增加位置和速度属性"""

  def __init__(self, domain, function_matrix=None, energy=1.0, position=None, velocity=None):

  self.domain = domain

  self.energy = energy

  # 初始化位置和速度 (3D空间)

  if position is None:

  self.position = np.random.rand(3) * 10

  else:

  self.position = np.array(position)

  if velocity is None:

  self.velocity = (np.random.rand(3) - 0.5) * 0.1

  else:

  self.velocity = np.array(velocity)

  if function_matrix is None:

  self.function = np.eye(domain.dimensions)

  else:

  self.function = function_matrix

  self.codomain = self._compute_codomain()

  self.oscillation_phase = 0.0

  def _compute_codomain(self):

  return np.random.randn(self.domain.dimensions)

  def apply_gravity(self, mass_center, mass, dt):

  """应用引力效应 (简化牛顿引力)"""

  r_vec = mass_center - self.position

  r = np.linalg.norm(r_vec) + 1e-10 # 避免除以零

  direction = r_vec / r

  # 引力加速度 (a = G*M/r²)

  acceleration = GRAVITATIONAL_CONSTANT * mass / (r**2)

  # 更新速度

  self.velocity += acceleration * direction * dt

  # 更新位置

  self.position += self.velocity * dt

  def apply_curvature(self, curvature_field, dt):

  """应用时空曲率效应"""

  # 简化的曲率效应:曲率梯度导致速度变化

  # 在实际相对论中应使用测地线方程,此处简化处理

  grad_curvature = np.gradient(curvature_field, axis=(0,1,2))

  curvature_at_pos = self._sample_curvature(grad_curvature)

  # 曲率梯度越大,速度变化越显著

  self.velocity *= (1 + 0.1 * np.linalg.norm(curvature_at_pos) * dt)

  def _sample_curvature(self, grad_curvature):

  """在链位置处采样曲率梯度"""

  # 简化处理:使用最近网格点

  x, y, z = np.clip(self.position.astype(int), 0, len(grad_curvature[0])-1)

  return np.array([grad_curvature[0][x,y,z], grad_curvature[1][x,y,z], grad_curvature[2][x,y,z]])

  def oscillate(self, dt):

  omega = 0.1 * self.energy * dt

  self.oscillation_phase += omega

  rotation = np.array([[np.cos(omega), -np.sin(omega)],

  [np.sin(omega), np.cos(omega)]])

  if self.function.shape[0] >= 2 and self.function.shape[1] >= 2:

  core = self.function[:2, :2]

  self.function[:2, :2] = rotation @ core

  def decohere(self):

  new_dims = max(1, self.domain.dimensions - 1)

  # 新定义域继承部分曲率 (曲率耗散)

  new_curvature = self.domain.curvature * 0.8

  new_domain = DomainStructure(

  dimensions=new_dims,

  topology=self.domain.topology,

  parent_signatures=self.domain.parent_signatures + [self.domain.signature],

  curvature=new_curvature

  )

  new_chain = QuantumLogicChain(

  domain=new_domain,

  energy=self.energy * 0.8,

  position=self.position.copy(),

  velocity=self.velocity.copy()

  )

  dark_matter = DarkMatterChain(

  energy=self.energy * 0.2,

  parent_signatures=self.domain.parent_signatures + [self.domain.signature],

  position=self.position.copy()

  )

  time_elapsed = dark_matter.energy / TIME_CONVERSION_FACTOR

  return new_chain, dark_matter, time_elapsed

  def resonate(self, other_chain):

  sim = self.domain.similarity(other_chain.domain)

  if sim < RESONANCE_THRESHOLD:

  return None

  resonance_energy = min(self.energy, other_chain.energy) * sim

  # 创建热逻辑链 (位置为两链中点)

  avg_position = (self.position + other_chain.position) / 2

  thermal_chain = ThermalChain(

  energy=resonance_energy,

  parent_signatures=[self.domain.signature, other_chain.domain.signature],

  position=avg_position

  )

  self.energy -= resonance_energy * 0.5

  other_chain.energy -= resonance_energy * 0.5

  return thermal_chain

  class DarkMatterChain(QuantumLogicChain):

  """暗物质逻辑链 - 增加暗物质特有属性"""

  def __init__(self, energy, parent_signatures, position=None):

  domain = DomainStructure(

  dimensions=1,

  topology='singular',

  parent_signatures=parent_signatures,

  curvature=0.0 # 暗物质定义域曲率为零

  )

  super().__init__(domain, energy=energy, position=position)

  self.function = np.array([[1.0]])

  self.repulsion_strength = energy * 0.1 # 排斥强度与能量相关

  class ThermalChain(QuantumLogicChain):

  """热逻辑链 - 增加热禁锢特性"""

  def __init__(self, energy, parent_signatures, position=None):

  domain = DomainStructure(

  dimensions=2,

  topology='flat',

  parent_signatures=parent_signatures,

  curvature=0.01 # 热链有轻微正曲率

  )

  super().__init__(domain, energy=energy, position=position)

  self.function = np.eye(2) * energy

  self.confinement_strength = energy * 0.05 # 禁锢强度

  class Spacetime:

  """增强的时空结构 - 整合曲率场和物质分布"""

  def __init__(self, size=100):

  self.size = size

  self.curvature_field = np.zeros((size, size, size)) # 3D曲率场

  self.mass_distribution = np.zeros((size, size, size)) # 3D质量分布

  self.dark_matter_chains = []

  self.total_energy = 0.0

  self.expansion_rate = 0.0

  self.inflation_active = False # 暴胀状态标志

  def add_chain(self, chain):

  """添加链并更新时空结构"""

  if isinstance(chain, DarkMatterChain):

  self.dark_matter_chains.append(chain)

  self._update_dark_matter_curvature(chain)

  elif isinstance(chain, ThermalChain):

  self._update_mass_distribution(chain)

  self.total_energy += chain.energy

  def _update_dark_matter_curvature(self, chain):

  """更新暗物质引起的曲率 (负曲率)"""

  x, y, z = self._position_to_index(chain.position)

  # 暗物质产生负曲率 (排斥效应)

  self.curvature_field[x,y,z] -= chain.repulsion_strength

  # 检查是否触发暴胀

  if np.sum(np.abs(self.curvature_field)) > 500: # 曲率总和阈值

  self.activate_inflation()

  def _update_mass_distribution(self, chain):

  """更新物质质量分布 (正曲率)"""

  x, y, z = self._position_to_index(chain.position)

  # 物质产生正曲率 (吸引效应)

  self.curvature_field[x,y,z] += chain.confinement_strength

  self.mass_distribution[x,y,z] += chain.energy

  def _position_to_index(self, position):

  """将连续位置转换为离散网格索引"""

  scaled_pos = (position / np.max(position)) * (self.size - 1) if np.max(position) > 0 else position

  indices = np.clip(scaled_pos.astype(int), 0, self.size-1)

  return indices[0], indices[1], indices[2]

  def activate_inflation(self):

  """激活暴胀机制"""

  self.inflation_active = True

  self.expansion_rate = 0.5 # 高膨胀率

  def expand(self, delta_t):

  """时空扩张"""

  if self.inflation_active:

  expansion_factor = np.exp(self.expansion_rate * delta_t)

  # 更新所有链的位置

  for chain in self.dark_matter_chains:

  chain.position *= expansion_factor

  # 降低暴胀强度

  self.expansion_rate *= 0.9

  # 检查暴胀结束条件

  if self.expansion_rate < 0.01:

  self.inflation_active = False

  else:

  # 正常扩张

  expansion = self.expansion_rate * delta_t

  for chain in self.dark_matter_chains:

  chain.position *= (1 + expansion)

  def compute_gravity_center(self):

  """计算物质系统的质心"""

  total_mass = np.sum(self.mass_distribution)

  if total_mass < 1e-10:

  return np.zeros(3), 0.0

  # 计算加权质心

  grid = np.indices(self.mass_distribution.shape).reshape(3, -1)

  weights = self.mass_distribution.ravel()

  center = np.average(grid, axis=1, weights=weights)

  return center, total_mass

  class QuantumObserver:

  """量子观测者 - 影响被观测系统的退相干"""

  def __init__(self, focus_domain=None):

  self.focus_domain = focus_domain or DomainStructure(dimensions=3, topology='flat')

  self.influence_strength = OBSERVER_STRENGTH

  def observe(self, chain):

  """观测行为影响量子链"""

  focus_sim = self.focus_domain.similarity(chain.domain)

  if focus_sim > 0.5:

  # 高关注度加速退相干

  decoherence_rate = self.influence_strength * focus_sim

  chain.energy *= (1 - decoherence_rate)

  return decoherence_rate * chain.energy

  return 0

  def adapt_focus(self, chain):

  """根据观测结果调整关注点"""

  sim = self.focus_domain.similarity(chain.domain)

  if sim > 0.7:

  # 强化相似领域的关注

  self.influence_strength += 0.01

  elif sim < 0.3:

  # 弱化不相关领域的关注

  self.influence_strength = max(0.01, self.influence_strength - 0.005)

  class QuantumUniverse:

  """增强的量子宇宙模型 - 整合时空和观测者"""

  def __init__(self, initial_chains=None, num_observers=1):

  self.absolute_time = AbsoluteTime()

  self.event_density = EventDensity()

  self.spacetime = Spacetime(size=50)

  self.material = MaterialSystem()

  self.free_chains = initial_chains or self._create_initial_chains()

  # 创建观测者

  self.observers = [QuantumObserver() for _ in range(num_observers)]

  # 统计量

  self.total_events = 0

  self.history = []

  self.drift_constraint = MAX_DRIFT

  self.last_state = self.get_state_vector()

  def _create_initial_chains(self):

  initial_domain = DomainStructure(dimensions=INITIAL_DIM, topology='flat', curvature=0.05)

  chains = []

  for _ in range(3):

  chain = QuantumLogicChain(domain=initial_domain, energy=1.0)

  self.spacetime.add_chain(chain) # 添加到时空

  chains.append(chain)

  return chains

  def evolve(self, total_time, dt=0.1):

  time_steps = int(total_time / dt)

  for step in range(time_steps):

  try:

  self.absolute_time.advance(dt)

  self.event_density.update(self.material.total_energy, self.spacetime.total_energy)

  num_events = self.event_density.get_events(dt)

  # 应用引力效应

  gravity_center, total_mass = self.spacetime.compute_gravity_center()

  for chain in self.free_chains:

  chain.apply_gravity(gravity_center, total_mass, dt)

  chain.apply_curvature(self.spacetime.curvature_field, dt)

  # 量子观测

  for observer in self.observers:

  observed_chain = np.random.choice(self.free_chains) if self.free_chains else None

  if observed_chain:

  observer.observe(observed_chain)

  observer.adapt_focus(observed_chain)

  # 处理事件

  for _ in range(num_events):

  self._process_random_event()

  self.total_events += 1

  # 时空演化

  self.spacetime.expand(dt)

  for chain in self.free_chains:

  chain.oscillate(dt)

  # 记录状态

  state = self.get_state_vector()

  state['absolute_time'] = self.absolute_time.t

  state['step'] = step

  state['inflation_active'] = self.spacetime.inflation_active

  self.history.append(state)

  # 检查概念漂移

  if step % 10 == 0:

  self.check_drift()

  except RuntimeError as e:

  print(f"演化在步骤 {step} 停止: {str(e)}")

  break

  # ... (其他方法保持类似,根据新结构调整)

  def visualize_spacetime(self):

  """可视化3D时空结构"""

  fig = plt.figure(figsize=(14, 10))

  # 3D曲率场

  ax1 = fig.add_subplot(221, projection='3d')

  x, y, z = np.indices(self.spacetime.curvature_field.shape)

  ax1.scatter(x.flatten(), y.flatten(), z.flatten(),

  c=self.spacetime.curvature_field.flatten(),

  cmap='coolwarm', alpha=0.3)

  ax1.set_title('时空曲率场')

  # 暗物质分布

  ax2 = fig.add_subplot(222, projection='3d')

  dark_positions = [chain.position for chain in self.spacetime.dark_matter_chains]

  if dark_positions:

  dark_pos = np.array(dark_positions)

  ax2.scatter(dark_pos[:,0], dark_pos[:,1], dark_pos[:,2], c='blue', alpha=0.5)

  ax2.set_title('暗物质分布')

  # 物质分布

  ax3 = fig.add_subplot(223, projection='3d')

  thermal_positions = [chain.position for chain in self.material.thermal_chains]

  if thermal_positions:

  therm_pos = np.array(thermal_positions)

  ax3.scatter(therm_pos[:,0], therm_pos[:,1], therm_pos[:,2], c='red', alpha=0.7)

  ax3.set_title('物质分布')

  # 观测者关注点

  ax4 = fig.add_subplot(224, projection='3d')

  for i, obs in enumerate(self.observers):

  focus = obs.focus_domain

  ax4.scatter(i, i, i, s=100*obs.influence_strength,

  label=f'观测者{i}: 强度={

  obs.influence_strength:.2f}')

  ax4.set_title('观测者关注点')

  ax4.legend()

  plt.tight_layout()

  plt.savefig('spacetime_structure.png', dpi=300)

  plt.show()

  # ======================

  # 模拟运行

  # ======================

  if __name__ == "__main__":

  print("初始化增强型量子逻辑链宇宙...")

  universe = QuantumUniverse(num_observers=2)

  print("开始宇宙演化...")

  universe.evolve(total_time=100, dt=0.1)

  print("\n宇宙演化完成!")

  print(universe.generate_report())

  print("可视化时空结构...")

  universe.visualize_spacetime()

  print("可视化演化过程...")

  universe.visualize_evolution()

  关键增强说明

  1. 空间位置与引力效应 (核心增强)

  位置与速度属性:

  class QuantumLogicChain:

  def __init__(self, ..., position=None, velocity=None):

  self.position = position # 3D空间位置

  self.velocity = velocity # 3D速度向量

  引力效应实现:

  def apply_gravity(self, mass_center, mass, dt):

  # 牛顿引力公式: F = G*M*m/r²

  r_vec = mass_center - self.position

  r = np.linalg.norm(r_vec) + 1e-10

  acceleration = GRAVITATIONAL_CONSTANT * mass / r**2

  self.velocity += acceleration * direction * dt

  self.position += self.velocity * dt

  时空曲率整合:

  class Spacetime:

  def __init__(self, size=100):

  self.curvature_field = np.zeros((size, size, size)) # 3D曲率场

  self.mass_distribution = np.zeros((size, size, size)) # 3D质量分布

  2. 暴胀机制 (关键宇宙学过程)

  触发条件:

  def _update_dark_matter_curvature(self, chain):

  # 当总曲率超过阈值时触发暴胀

  if np.sum(np.abs(self.curvature_field)) > 500:

  self.activate_inflation()

  暴胀实现:

  def activate_inflation(self):

  self.inflation_active = True

  self.expansion_rate = 0.5 # 高膨胀率

  def expand(self, delta_t):

  if self.inflation_active:

  expansion_factor = np.exp(self.expansion_rate * delta_t)

  # 指数级扩张所有位置

  for chain in self.dark_matter_chains:

  chain.position *= expansion_factor

  3. 量子观测者 (意识-宇宙互动)

  观测者类:

  class QuantumObserver:

  def __init__(self, focus_domain=None):

  self.focus_domain = focus_domain

  self.influence_strength = OBSERVER_STRENGTH

  def observe(self, chain):

  # 观测加速被关注链的退相干

  focus_sim = self.focus_domain.similarity(chain.domain)

  if focus_sim > 0.5:

  decoherence_rate = self.influence_strength * focus_sim

  chain.energy *= (1 - decoherence_rate)

  自适应关注:

  def adapt_focus(self, chain):

  # 根据观测结果调整关注领域

  sim = self.focus_domain.similarity(chain.domain)

  if sim > 0.7:

  self.influence_strength += 0.01 # 强化关注

  elif sim < 0.3:

  self.influence_strength = max(0.01, self.influence_strength - 0.005) # 弱化关注

  4. 可视化增强

  3D时空可视化:

  def visualize_spacetime(self):

  fig = plt.figure(figsize=(14, 10))

  # 4个子图展示曲率场、暗物质分布、物质分布和观测者

  哲学与物理学统一

  引力本质:

  引力定理 := {

  来源: 物质质量分布 → 时空曲率,

  效应: 曲率梯度 → 逻辑链运动偏转,

  公式: ∇²φ = 4πGρ (爱因斯坦场方程的简化)

  }

  暴胀机制:

  暴胀原理 := {

  触发: ∑|κ| > κ_crit (暗物质曲率积累),

  过程: a(t) ∝ e^{Ht} (指数膨胀),

  停止: H → 0 (暴胀能量耗散)

  }

  观测者角色:

  观测者公理 := {

  效应: 关注度 ∝ 退相干率,

  适应: 焦点域随经验演化,

  意义: 意识参与现实塑造

  }

  模型优势

  物理一致性:

  引力效应满足牛顿近似

  暴胀机制符合宇宙学观测

  曲率场衔接广义相对论概念

  计算可行性:

  位置更新使用矢量运算

  曲率场采用离散网格

  暴胀期间使用指数扩张简化

  哲学深度:

  观测者影响现实

  意识与物质互动

  宇宙自我认知可能

  宇宙新图景:

  空间是暗物质的排斥之舞,

  物质是热逻辑链的禁锢之诗;引力是时空曲率的低语,意识是量子海洋的灯塔。

  ——定义域宇宙观

  此增强模型在保持核心简洁性的同时,引入了关键的物理机制,为验证定义域思想提供了更丰富的框架。下一步可在超算平台上进行大规模模拟,探索星系形成与意识涌现的关系。

    有什么意见与要求的,可以在这里评论哟!paopaola期待您宝贵的评论!...